PLUG DOOR STUDY SUMMARY

David Kapukchyan Cold QCD Meeting December 13, 2016

BACKGROUND

- sPHENIX, fsPHENIX, etc. will use the BABAR magnet to generate a magnetic field in the interaction region for tracking, etc.
- The magnetic field generated needs to have a flux return to ensure a smooth magnetic field.
- There are two designs for the magnetic field flux return.
 - One uses an iron cylindrical block called the plug door
 - The other is to use a magnetic hadron calorimeter.
- This study will focus on the first option and a drawing of the detector with the plug doors or flux returns is shown on the next slide

DETECTOR GEOMETRY FOR FSPHENIX

 The figure on the right is what the detector geometry looks like for a Flux Return of 10.2 cm.

Forward Electromagnetic Calorimeter (FEMC)

Forward Hadron Calorimeter (FHCAL)

Flux Returns (AKA: Plug Door)

GOAL OF STUDY

- The option of using a plug door means that there is dead material between the Hadron Calorimeter and the Electromagnetic calorimeter as shown on the last slide.
- This dead material will affect the energy measured by the Hadron Calorimeter.
- The purpose of this study to find out by how much the plug door will affect our ability to measure the energy of particles in the hadron calorimeter
- In order to do this we need run simulations with the plug door at different thicknesses to understand where and at what energies does the plug door begin to matter

FIRST STEPS

- Modify fsPHENIX Fun4All file to generate pions (π -) at a pseudorapidity (η) of 2.0, well within the region of both the FEMC and FHCAL
- The energy of the pions were initially chosen arbitrarily to be 30.0 GeV.
- The thickness or length of the plug door was chosen to be 10.2 cm the currently proposed length
- First started by looking at about 100 events then 10,000 and now I generate 100,000 events for each thickness and energy that I simulate
- Once simulations were complete I made histograms for the total energy absorbed by both the FEMC and FHCAL.

10.2 CM 30 GEV PION

CONTINUING SIMULATIONS

- To understand how the plug door is affecting the energy for other thickness more simulations were needed
- The thicknesses I ran was: 0.1, 2.55, 5.1, 7.5, 10.2, 12.5, 15, 17.5, 20.4, 21.8 cm
 - 21.8 cm is the limit before the door overlaps with the FHCAL
- The next slide shows the overlapped histogram from all of these thicknesses
 - In the legend the underscore ("_") character is equivalent to a dot (".") so "7_5" means a thickness of 7.5 cm

OVERLAPPED HISTOGRAMS 30 pped Histograms Number of Events vs. Reco Pi- Energy GEV PIONS

WHAT TO DO NEXT

- Started to fit the histograms from those thicknesses to a Gaussian.
- To fit the histogram the following method was used
 - First fit was done on whole range of histogram
 - Second fit is done on the range $\mu_{\rm fit}\pm\sigma_{\rm fit}$ from the first fit
 - Third fit is done on the range $\mu_{\text{fit}}\pm\sigma_{\text{fit}}$ from the second fit
- The reason for doing this was to isolate the tail by using a Gaussian fit to get the mean and sigma then everything outside of 2 sigma would be the tail
- The tail region would be integrated and divided by the total number of events to get the percentage of values in the tail.
 - This value would be called "R" or "R > 2sigma" as seen on the slides below
- The backup slides and the slides below contain the histograms with the fits, and the "R" value, the fit mean, the fit sigma, and the fit sigma/mean vs. thickness for those fits from 30 GeV pion simulations

R > 2sigma vs. Thickness of Flux Return

Sigma/Mean vs. Thickness of Flux Return

SUCCESS AND FAILURE

- From the plots it is clear that at thicknesses less than or equal to 7.5 cm the Gaussian does a great job of encompassing the peak and isolating the tail
- For thicknesses greater than about 7.5 cm the behavior becomes non Gaussian and perhaps even a second peak develops.
- This means we can't do a simple Gaussian fit to isolate the tail
- A new way to characterize the plug door is needed.
- This can be done by looking at the energy deposited in the flux return itself
- To do this I wrote a module which can be found on github under the sphenix collaboration: /analysis/ForwardCalo/Flux_Return_Study
 - Module can be used to get energy from various sources see README for more info
- Histograms were made of this energy as before for the calorimeters and can be found on the slide below

10.2 CM 30 GEV PIONS ENERGY DEPOSITED IN FORWARD FLUX RETURN

ALMOST THERE

- Now that we have the energy deposited in the plug door we can make plots of E/E_input vs. Flux Return Thickness
 - The E will be either the mean for the energies from the calorimeters or flux return or the RMS of the histogram for those energies
 - E_input will be the energy of the incoming pion
- The Idea is to see at which thickness the resolution of the calorimeters exceed that
 of the Flux Return
- To get the natural or clean resolution of the calorimeters the millimeter thickness histogram is fitted to a Gaussian using the method described
 - The sigma from this fit is taken as the natural resolution ($\sigma_{\rm natural}$) and then divided by the mean from the fit (E_Fit_Mean)
 - This number is the reference point
- These plots can be found below and on the backup slides

E_FR_p_RMS/E_Input vs. Flux Return Thickness

CONCLUSIONS

- As can be seen from the plots above only for 10 GeV pions the resolution of the detector is not affected by a plug door of thickness 10.2 cm
- As the energies of the incoming pions increases the tolerable thickness goes down to about 7.5 cm.
- This data seems to complement the data from the fits because at around this thickness the fits started to become less Gaussian
- This clearly indicates that at approximately 7.5 cm the plug door begins to effect the measured energy and energy resolution

BACKUP SLIDES

EXTRA GAUSSIAN FIT PLOTS

Sigma vs. Thickness of Flux Return

EXTRA E/E_INPUT PLOTS

E_Mean/E_input vs. Flux Return Thickness

E_RMS/E_input vs. Flux Return Thickness

Counts vs. e at 10GeV with thickness 0_1cm

E_Mean/E_input vs. Flux Return Thickness

E_RMS/E_input vs. Flux Return Thickness

Counts vs. e at 30GeV with thickness 0_1cm

E_Mean/E_input vs. Flux Return Thickness

E_RMS/E_input vs. Flux Return Thickness

Counts vs. e at 60GeV with thickness 0_1cm

E_Mean/E_input vs. Flux Return Thickness

E_RMS/E_input vs. Flux Return Thickness

Counts vs. e at 80GeV with thickness 0_1cm

E_RMS/E_input vs. Flux Return Thickness

E_FR_p_Mean/E_Input vs. Flux Return Thickness

E_FR_p_RMS/E_Input vs. Flux Return Thickness

Counts vs. e at 100GeV with thickness 0_1cm

